The MHD (magnetohydrodynamic) generator or dynamo transforms thermal energy or kinetic energy directly into electricity. MHD generators are different from traditional electric generators in that they can operate at high temperatures without moving parts. MHD was developed because the exhaust of a plasma MHD generator is a flame, still able to heat the boilers of a steam power plant. So high-temperature MHD was developed as a topping cycle to increase the efficiency of electric generation, especially when burning coal or natural gas. It has also been applied to pump liquid metals and for quiet submarine engines.
The basic concept underlying the mechanical and fluid dynamos is the same. The fluid dynamo, however, uses the motion of fluid or plasma to generate the currents which generate the electrical energy. The mechanical dynamo, in contrast, uses the motion of mechanical devices to accomplish this. The functional difference between an MHD generator and an MHD dynamo is the path the charged particles follow.
MHD generators are now practical for fossil fuels, but have been overtaken by other, less expensive technologies, such as combined cycles in which a gas turbine's or molten carbonate fuel cell's exhaust heats steam for steam turbine. The unique value of MHD is that it permits an older single-cycle fossil-fuel power plant to be upgraded to high efficiency.
Natural MHD dynamos are an active area of research in plasma physics and are of great interest to the geophysics and astrophysics communities. From their perspective the earth is a global MHD dynamo and with the aid of the particles on the solar wind produces the aurora borealis. The differently charged electromagnetic layers produced by the dynamo effect on the earth's geomagnetic field enable the appearance of the aurora borealis. As power is extracted from the plasma of the solar wind, the particles slow and are drawn down along the field lines in a brilliant display over the poles.
The Lorentz Force Law describes the effects of a charged particle moving in a constant magnetic field. The simplest form of this law is given by the vector equation.
F= q.(vxB)
where
F is the force acting on the particle,
Q is charge of particle,
v is velocity of particle,
B is magnetic field.
The vector F is perpendicular to both v and B according to the Right hand rule.
Typically for a large scale power station to approach operational efficiency in computer models, steps must be taken to increase the electrical conductivity of the conductive substance. The heating of a gas to plasma or the addition of other easily ionizable substances like the salts of alkali metals accomplishes this increase in conductivity. In practice a number of issues must be considered in the implementation of a MHD generator: Generator efficiency, Economics, and Toxic byproducts. These issues are affected by the choice of one of the three MHD generator designs. These are the Faraday generator, the Hall generator, and the disc.
Faraday generator
The Faraday generator is named after the man who first looked for the effect in the Thames river (see history). A simple Faraday generator would consist of a wedge-shaped pipe or tube of some non-conductive material. When an electrically conductive fluid flows through the tube, in the presence of a significant perpendicular magnetic field, a charge is induced in the field, which can be drawn off as electrical power by placing the electrodes on the sides at 90 degree angles to the magnetic field.
There are limitations on the density and type of field used. The amount of power that can be extracted is proportional to the cross sectional area of the tube and the speed of the conductive flow. The conductive substance is also cooled and slowed by this process. MHD generators typically reduce the temperature of the conductive substance from plasma temperatures to just over 1000 °C.
The main practical problem of a Faraday generator is that differential voltages and currents in the fluid short through the electrodes on the sides of the duct. The most powerful waste is from the Hall effect current. This makes the Faraday duct very inefficient. Most further refinements of MHD generators have tried to solve this problem. The optimal magnetic field on duct-shaped MHD generators is a sort of saddle shape. To get this field, a large generator requires an extremely powerful magnet. Many research groups have tried to adapt superconducting magnets to this purpose, with varying success.
Hall generator
The most common answer is to use the Hall effect to create a current that flows with the fluid. The normal scheme is to place arrays of short, vertical electrodes on the sides of the duct. The first and last electrodes in the duct power the load. Each other electrode is shorted to an electrode on the opposite side of the duct. These shorts of the Faraday current induce a powerful magnetic field within the fluid, but in a chord of a circle at right angles to the Faraday current. This secondary, induced field makes current flow in a rainbow shape between the first and last electrodes.
Losses are less than a Faraday generator, and voltages are higher because there is less shorting of the final induced current. However, this design has problems because the speed of the material flow requires the middle electrodes to be offset to "catch" the Faraday currents. As the load varies, the fluid flow speed varies, misaligning the Faraday current with its intended electrodes, and making the generator's efficiency very sensitive to its load.
Disc generator
The third, currently most efficient answer is the Hall effect disc generator. This design currently holds the efficiency and energy density records for MHD generation. A disc generator has fluid flowing between the center of a disc, and a duct wrapped around the edge. The magnetic excitation field is made by a pair of circular Helmholtz coils above and below the disk. The Faraday currents flow in a perfect dead short around the periphery of the disk. The Hall effect currents flow between ring electrodes near the center and ring electrodes near the periphery.
Another significant advantage of this design is that the magnet is more efficient. First, it has simple parallel field lines. Second, because the fluid is processed in a disk, the magnet can be closer to the fluid, and magnetic field strengths increase as the 7th power of distance. Finally, the generator is compact for its power, so the magnet is also smaller. The resulting magnet uses a much smaller percentage of the generated power.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment